Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BBA Adv ; 5: 100113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292063

RESUMO

The Coulomb potential maps generated by electron microscopy (EM) experiments contain not only information about the position but also about the charge state of the atom. This feature of EM maps allows the identification of specific ions and the protonation state of amino acid side chains in the sample. Here, we summarize qualitative observations of charges in EM maps, discuss the difficulties in interpreting the charge in Coulomb potential maps with respect to distinguishing it from radiation damage, and outline considerations to implement the correct charge in fitting algorithms.

2.
Small ; 17(46): e2102975, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34643032

RESUMO

Filtration through membranes with nanopores is typically associated with high transmembrane pressures and high energy consumption. This problem can be addressed by reducing the respective membrane thickness. Here, a simple procedure is described to prepare ultrathin membranes based on protein nanopores, which exhibit excellent water permeance, two orders of magnitude superior to comparable, industrially applied membranes. Furthermore, incorporation of either closed or open protein nanopores allows tailoring the membrane's ion permeability. To form such membranes, the transmembrane protein ferric hydroxamate uptake protein component A (FhuA) or its open-pore variant are assembled at the air-water interface of a Langmuir trough, compressed to a dense film, crosslinked by glutaraldehyde, and transferred to various support materials. This approach allows to prepare monolayer or multilayer membranes with a very high density of protein nanopores. Freestanding membranes covering holes up to 5 µm in diameter are visualized by atomic force microscopy (AFM), helium ion microscopy, and transmission electron microscopy. AFM PeakForce quantitative nanomechanical property mapping (PeakForce QNM)  demonstrates remarkable mechanical stability and elastic properties of freestanding monolayer membranes with a thickness of only 5 nm. The new protein membrane can pave the way to energy-efficient nanofiltration.


Assuntos
Nanoporos , Membranas Artificiais , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
3.
Angew Chem Int Ed Engl ; 60(20): 11098-11103, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33565244

RESUMO

Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies.


Assuntos
Galactose/síntese química , Nanopartículas/química , Galactose/química , Estrutura Molecular , Tamanho da Partícula , Polimerização , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...